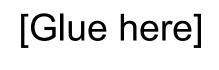


Smplifying and Substituting (H)

Pre-Intervention Assessment


Name:					
Class:					
Date:					

Question	Objective	RAG
1	Expand quadratics	
2	Factorise quadratics	
3	Simplify algebraic fractions	
4	Expand cubics	
5	Use inverse and composite functions	

1.	Expand and simplify	(x + 4)(x + 6)	
2.	Factorise x ² -x-20)	
3.	Simplify fully	$\frac{2x^2 + 3x + 1}{x^2 - 3x - 4}$	
4.	Show that $(x-1)(x+2)(x)$ for all values of x.	$-4) = x^3 - 3x^2 - 6x + 8$	

.....

5. The function f is such that f(x) = 4x - 1 Find $f^{-1}(x)$

