

Simplifying and Substituting (H)

Intervention Booklet

Name:			
Class:			

Useful websites:

www.mathswatchvle.com

(Video explanations and questions) Username: STH...@twgash Password: stmaths

www.methodmaths.com

(Past papers online that get instantly marked) Centre ID: wga Username: firstname Password: lastname

www.hegartymaths.com

(Online tutorials and quizzes) Login: first name and last name are case sensitive

www.bbc.co.uk/schools/gcsebitesize/maths

Expand and Factorise Quadratics

Things to remember:

- Use FOIL (first, outside, inside, last) or the grid method (for multiplication) to expand brackets.
- For any quadratic ax² + bx + c = 0, find a pair of numbers with a sum of b and a product of ac to factorise.

Questions:

1. Expand and simplify (m + 7)(m + 3)

(Total for question = 2 mar				
	6 + 9 <i>x</i>	Factorise	(a)	2.
	<i>y</i> ² – 16	Factorise	(b)	
	2 <i>p</i> ² – <i>p</i> – 10	Factorise	(c)	

(2) (Total for Question is 4 marks)

3. Solve, by factorising, the equation $8x^2 - 30x - 27 = 0$

(Total for Question is 3 marks)

(Total for question is 2 marks)

5. Write $x^2 + 2x - 8$ in the form $(x + m)^2 + n$ where *m* and *n* are integers.

..... (Total for question is 2 marks) Expand 4(3x + 5)6. (a) (1) Expand and simplify 2(x-4) + 3(x+5)(b) (2) Expand and simplify (x + 4)(x + 6)(c) (2) (Total for Question is 5 marks) 7. (a) Factorise $x^2 + 5x + 4$ (2) Expand and simplify (3x-1)(2x+5)(b)

> (2) (Total for Question is 4 marks)

8.	(a)	Expand	3(2 + t)				
	(b)	Expand	3 <i>x</i> (2 <i>x</i> + 5))			(1)
	(c)	Expand a	and simplify	v (m + 3)(m + 10)		(2)
						(Total for Que	(2) stion is 5 marks)
9.	(a)	Factorise	e	$x^2 + 7x$			
	(b)	Factorise	e	<i>y</i> ² – 10 <i>y</i> + 16			(1)
	*(c)	(i) Fa	actorise	$2t^2 + 5t + 2$			(2)
		Tł	s a positive he expressi xplain why.	whole number. on 2 <i>t</i> ² + 5 <i>t</i> + 2 c	an never have a	a value that is a	prime number.
						(Total for Que	 (3) stion is 6 marks)

Algebraic Fractions – Simplifying

Things to remember:

- Factorise the numerator and denominator;
- Cancel common factors;
- Then add/subtract/multiply divide if necessary.

Questions:

2.

3.

Simplify

 $x^2 + 3x + 2$

1. Simplify

blify $\frac{p^2-9}{2p+6}$

Simplify fully	$\frac{6x^2+3x}{4x^2-1}$	(Total 3 marks)
		 (Total 3 marks)
Simplify $\frac{x^2}{2}$	+2x+1	

(Total 3 marks)

.....

4.	Simplify fully	$\frac{x^2 + x - 6}{x^2 - 7x + 10}$	
1			
5.	(a) Simplify	$\frac{2x+4}{x^2+4x+4}$	(Total 3 marks)

(3)

(b) Write $\frac{1}{x+4} + \frac{2}{x-4}$ as a single fraction in its simplest form.

(3) (Total 6 marks)

6. Simplify fully
$$\frac{x+3}{4} + \frac{x-5}{3}$$

(Total 3 marks)

Expanding more than two binomials

Things to remember:

- Start by expanding two pair of brackets using the grid or FOIL method.
- Then expand the third set of brackets.
- Use columns to keep x^3 , x^2 etc in line to help with addition.

Questions:

1.

Show that $(x - 1)(x + 2)(x - 4) = x^3 - 3x^2 - 6x + 8$ for all values of x.

(Total for question is 3 marks)

2. Show that $(3x - 1)(x + 5)(4x - 3) = 12x^3 + 47x^2 - 62x + 15$ for all values of x.

(Total for question is 3 marks)

3. Show that $(x - 3)(2x + 1)(x + 3) = 2x^3 + x^2 - 18x - 9$ for all values of x.

(Total for question is 3 marks)

4. $(2x + 1)(x + 6)(x - 4) = 2x^3 + ax^2 + bx - 24$ for all values of x, where a and b are integers. Calculate the values of a and b.

а	=	

b =

(Total for question is 4 marks)

Inverse and Composite Functions

Things to remember:

- y = f(x) means that y is a function of x.
- f(a) means the value of x is a, so substitute x with a.
- The graph of the inverse is the reflection of the graph in the line y = x
- We find the inverse function by putting the original function equal to y and rearranging to make x the subject.
- We use the notation $f^{-1}(x)$ for the inverse function.
- When a function is followed by another, the result is a composite function.
- fg(x) means do g first, followed by f.

Questions:

- 1. The functions f and g are such that
 - f(x) = 1 5x and g(x) = 1 + 5x
 - (a) Show that gf(1) = -19

(b) Prove that $f^{-1}(x) + g^{-1}(x) = 0$ for all values of *x*.

(2)

- 2. The function f is such that
 - f(x) = 4x 1
 - Find $f^{-1}(x)$ (a)

 $f^{-1}(x) = \dots$ (2)

The function g is such that $g(x) = kx^2$ where k is a constant. Given that fg(2) = 12work out the value of k (b)

> *k* = (2) (Total for question = 4 marks)

- The functions f and g are such that 3. f(x) = 3(x - 4) and $g(x) = \frac{x}{5} + 1$ Find the value of f(10)
 - (a)

..... (1)

Find $g^{-1}(x)$ (b)

(c) Show that ff(x) = 9x - 48

(2) (Total for question = 5 marks)

4. $f(x) = 3x^2 - 2x - 8$ Express f(x + 2) in the form $ax^2 + bx$

(Total for question is 3 marks)