

Forming and Solving Equations (H)

Intervention Booklet

Name:			
Class:			

Useful websites:

www.mathswatchvle.com

(Video explanations and questions) Username: STH...@twgash Password: stmaths

www.methodmaths.com

(Past papers online that get instantly marked) Centre ID: wga Username: firstname Password: lastname

www.hegartymaths.com

(Online tutorials and quizzes) Login: first name and last name are case sensitive

www.bbc.co.uk/schools/gcsebitesize/maths

Iterations

Things to remember:

- Make sure you know how to rearrange formulae first.
- Parts (b) and (c) usually involve substitution and occasionally solving.
- To prove a solution lies between two values, substitute them both in and look for a change of sign.

Questions:

1. (a) Show that the equation $x^3 + 4x = 1$ has a solution between x = 0 and x = 1.

(b) Show that the equation $x^3 + 4x = 1$ can be rearranged to give $x = \frac{1}{4} - \frac{x^3}{4}$

(c) Starting with $x_0 = 0$, use the iteration formula $x_{n+1} = \frac{1}{4} - \frac{x_n^3}{4}$ twice, to find an estimate for the solution of $x^3 + 4x = 1$.

(3) (6 marks)

(2)

(1)

2. An approximate solution to an equation is found using this iterative process: $x = -\frac{(x_n)^3 - 3}{2}$ and x = -1

$$x_{n+1} = \frac{1}{8}$$
 and $x_1 = 1$

(a) Work out the values of x_2 and x_3

 $x_2 = \dots$ $x_3 = \dots$ (2)

(b) Work out the solution to 6 decimal places.

.....

(1) (3 marks)

3. (a) Show that the equation $3x^2 - x^3 + 3 = 0$ can be rearranged to give $x = 3 + \frac{3}{x^2}$

(b) Using

 $x_{n+1} = 3 + \frac{3}{x_n^2} \quad \text{with } x_0 = 3.2$ find the values of x_1 , x_2 and x_3 .

(c) Explain what the values of x_1 , x_2 and x_3 represent. (3)

Expand and Factorise Quadratics

Things to remember:

- Use FOIL (first, outside, inside, last) or the grid method (for multiplication) to expand brackets.
- For any quadratic ax² + bx + c = 0, find a pair of numbers with a sum of b and a product of ac to factorise.

Questions:

2.

1. Expand and simplify (m + 7)(m + 3)

(Total for question = 2 marks)			
	6 + 9 <i>x</i>	Factorise	(a)
(1)	<i>v</i> ² – 16	Factorise	(b)
(1)			()

(c) Factorise $2p^2 - p - 10$

(2) (Total for Question is 4 marks)

3. Solve, by factorising, the equation $8x^2 - 30x - 27 = 0$

(Total for Question is 3 marks)

(Total for question is 2 marks)

5. Write $x^2 + 2x - 8$ in the form $(x + m)^2 + n$ where *m* and *n* are integers.

..... (Total for question is 2 marks) Expand 4(3x + 5)6. (a) (1) Expand and simplify 2(x-4) + 3(x+5)(b) (2) Expand and simplify (x + 4)(x + 6)(c) (2) (Total for Question is 5 marks) 7. (a) Factorise $x^2 + 5x + 4$ (2) Expand and simplify (3x - 1)(2x + 5)(b)

> (2) (Total for Question is 4 marks)

8.	(a)	Expand	3(2 + t)				
	(b)	Expand	3 <i>x</i> (2 <i>x</i> + 5))			(1)
	(c)	Expand a	and simplify	v (m + 3)(m + 10)		(2)
						(Total for Que	(2) stion is 5 marks)
9.	(a)	Factorise	e	$x^2 + 7x$			
	(b)	Factorise	e	<i>y</i> ² – 10 <i>y</i> + 16			(1)
	*(c)	(i) Fa	actorise	$2t^2 + 5t + 2$			(2)
		Tł	s a positive he expressi xplain why.	whole number. on 2 <i>t</i> ² + 5 <i>t</i> + 2 c	an never have a	a value that is a	prime number.
						(Total for Que	 (3) stion is 6 marks)

Using the Quadratic Formula

Things to remember:

• For any quadratic, $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Questions:

- **1.** Solve $3x^2 + 7x 13 = 0$
 - Give your solutions correct to 2 decimal places.

2. Solve the equation $2x^2 + 6x - 95 = 0$ Give your solutions correct to 3 significant figures.

3. Solve $x^2 + 3x - 5 = 0$ Give your solutions correct to 4 significant figures.

(3 marks)

4. Solve this quadratic equation. $x^2 - 5x - 8 = 0$ Give your answers correct to 3 significant figures.

x =or x =

(3 marks)

5. (a) Solve $x^2 - 2x - 1 = 0$ Give your solutions correct to 2 decimal places.

.....

(b) Write down the solutions, correct to 2 decimal places, of $3x^2 - 6x - 3 = 0$

.....

(3) (6 marks)

(3)

6. (a) Solve $x^2 + x + 11 = 14$ Give your solutions correct to 3 significant figures.

```
(3)

y = x<sup>2</sup> + x + 11 The value of y is a prime number when x = 0, 1, 2 and 3

The following statement is not true.

'y = x<sup>2</sup> + x + 11 is always a prime number when x is an integer'

(b) Show that the statement is not true.

(1)

(4 marks)
```

Completing the Square

Things to remember:

- To complete the square:
 - 1. Halve the coefficient of x.
 - 2. Put in brackets with the x and square the brackets.
 - 3. Subtract the half-coefficient squared.
 - 4. Don't forget the constant on the end!
 - 5. Simply.
- For $(x p)^2 + q = 0$, the turning point is (p, q).

Questions:

1. (i) Sketch the graph of $f(x) = x^2 - 5x + 10$, showing the coordinates of the turning point and the coordinates of any intercepts with the coordinate axes.

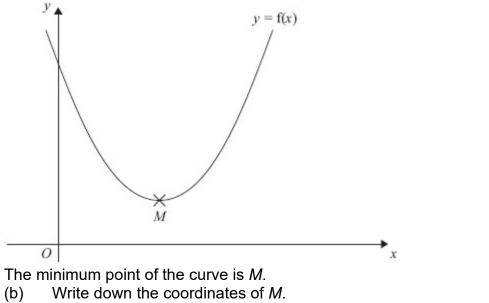
(ii) Hence, or otherwise, determine whether f(x + 2) - 3 = 0 has any real roots. Give reasons for your answer.

(Total for question = 6 marks)

2. (a) Write $2x^2 + 16x + 35$ in the form $a(x + b)^2 + c$ where *a*, *b*, and *c* are integers.

.....

(3)


(b) Hence, or otherwise, write down the coordinates of the turning point of the graph of $y = 2x^2 + 16x + 35$

(1) (Total for question = 4 marks)

3. The expression $x^2 - 8x + 21$ can be written in the form $(x - a)^2 + b$ for all values of x. (a) Find the value of a and the value of b.

a =	 	 	
b =	 	 	(3)
			(3)

The equation of a curve is y = f(x) where $f(x) = x^2 - 8x + 21$ The diagram shows part of a sketch of the graph of y = f(x).

.....

(1) (Total for Question is 4 marks)

Algebraic fractions – solving

Things to remember:

- Multiply every term by the product of the denominators;
- Solve to find x.

Questions:

1. Solve $\frac{5(2x+1)}{3} = 4x + 7$

x =

(Total 3 marks)

2. (a) Show that the equation
$$\frac{5}{x+2} = \frac{4-3x}{x-1}$$

can be rearranged to give $3x^2 + 7x - 13 = 0$

(b) Solve $3x^2 + 7x - 13 = 0$ Give your solutions correct to 2 decimal places.

x =	or x =
-----	--------

(3) (Total 6 marks)

(3)

3. Solve the equation

$$\frac{x}{2x-3} + \frac{4}{x+1} = 1$$

(Total 5 marks)

		3	4	5x
4.	Solve the equation	<i>x</i> +3	$\frac{1}{x-3}$	$=\frac{1}{x^2-9}$

x =

(Total 4 marks)

5. (a) Solve
$$\frac{3}{x} + \frac{3}{2x} = 2$$

(b) Using your answer to part (a), or otherwise, solve

3	3	- 2
$(y-1)^2$	$-\frac{1}{2(y-1)^2}$	- 2

<i>y</i> =	or <i>y</i> =
	(3)
	(Total 5 marks)

Nonlinear Simultaneous Equations

Things to remember:

- 1. Substitute the linear equation into the nonlinear equation.
- 2. Rearrange so it equals 0.
- 3. Factorise and solve for the first variable (remember there will be two solutions).
- 4. Substitute the first solutions to solve for the second variable.
- 5. Express the solution as a pair of coordinate where the graphs intersect.

Questions:

1. Solve the equations

$$x^2 + y^2 = 36$$

 $x = 2y + 6$

(Total for Question is 5 marks)

2 Solve the simultaneous equations $x^2 + y^2 = 25$ y = 2x + 5

3. Solve the simultaneous equations

$$x^{2} + y^{2} = 9$$

x + y = 2

Give your answers correct to 2 decimal places.

4. Solve algebraically the simultaneous equations $x^2 + y^2 = 25$ y - 2x = 5

(Total for Question is 5 marks)