100\% sheet

Year 10

$\underset{\text { Partners in excellence }}{ }$
Pressure of a fixed volume of gas increases as temperature increases
(temperature increases, speed increases, collisions occur more frequently and with more force so pressure increases).

average kinetic energy of the particles.

If kinetic energy increases so does
the temperature of gas.

No kinetic energy is lost when gas particles collide with each other or
the container.
Gas particles are in a constant state
of random motion.

Freezing	Liquid turns to a solid. Internal energy decreases.
Melting	Solid turns to a liquid. Internal energy increases.
Boiling / Evaporating	Liquid turns to a gas. Internal energy increases.
Condensation	Gas turns to a liquid. Internal energy decreases.
Sublimation	Solid turns directly into a gas. Internal energy increases.
Conservation of mass	When substances change state, mass is conserved.
Physical change	No new substance is made, process can be reversed.

	Units
Density	Kilograms per metre cubed $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
Mass	Kilograms (kg)
Volume	Metres cubed $\left(\mathrm{m}^{3}\right)$
Energy needed	Joules (J)
Specific latent heat	Joule per kilogram $(\mathrm{J} / \mathrm{kg})$
Change in thermal energy	Joules (J)
Specific heat capacity	Joule per kilogram degrees Celsius $\left(\mathrm{J} / \mathrm{kg}{ }^{\circ} \mathrm{C}\right)$
Temperature change	Degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$
Pressure	Pascals (Pa)

State	Particle arrangement	Properties
	Solid	Packed in a regular structure. Strong forces hold in place so cannot move.

PHYSICS ONLY: when you do work the temperature increases e.g. pump air quickly into a ball, the air gets hot because as the piston in the pump moves the particles bounce off increasing kinetic energy, which causes a temperature rise.

Pressure

AQA
PARTICLE MODEL OF MATTER

| Specific |
| :---: | :---: |
| Heat |
| Capacity | | Energy needed |
| :---: |
| to raise 1 kg of |
| substance by |
| $1^{\circ} \mathrm{C}$ |

Depends on:

- Mass of substance
- What the substance is
- Energy put into the system.

	Energy stored inside a system by particles	Internal energy is the total kinetic and potential energy of all the particles (atoms and molecules) in a system.
	Heating changes the energy stored within a system	Heating causes a change in state. As particles separate, potential energy stored increases. Heating increases the temperature of a system. Particles move faster so kinetic energy of particles increases.

Change in thermal energy $=$ mass
\mathbf{X} specific heat capacity \mathbf{X} temperature change.

\square
rnal energy is the total kinetic and pote
energy of all the particles (atoms and molecules) in a system.
separate, potential energy stored increases. Heating increases the temperature of a system. Particles move faster so kinetic energy of particles increases.

