100\% sheet

Year 10

Forces

Car travelling around a bend	Constant speed, direction changes.
Satellite orbiting the Earth	Constant speed, direction changes.

| Changing |
| :---: | :--- |
| velocity | | Objects in a circular motion, change |
| :--- |
| direction but keep a constant speed |

Gradient = vertical \div horizontal HIGHER ONLY

(final velocity) ${ }^{2}-$ (initial velocity $^{2}{ }^{2}=2 \mathrm{X}$ acceleration X distance $\mathrm{V}^{2}-\mathrm{u}^{2}=2 \mathrm{XaXs}$

Falling objects	In no air resistance,	Air
accelerate due	objects accelerate at	s
to gravity.	$9.8 \mathrm{~m} / \mathrm{s}^{2}$	obj

| Terminal |
| :---: | :---: | :---: |
| velocity | | Weight of an object |
| :---: |
| is balanced by |
| resistive forces |\quad| Obje |
| :---: |
| con |
| Resu |

Air resistance slows falling objects down.

Object moves at a constant velocity. Resultant force $=0$.

Distance- time graph	Shows how far an object moves along a straight line	Forces, acceleration and Newton's Laws of motion
Speed of		

Newton's Laws of motion

Speed or direction only changes if a resultant force acts on the object

$\begin{array}{l}\text { When the resultant force on an still object }=0, \\ \text { the object is stationary. }\end{array}$
When the resultant force on a moving object $=0$,

When the resultant force is greater than 0 , the object accelerates. It could speed up, slow down or change direction.

When two objects interact the forces exerted are equal and in an opposite direction.

	Drivers reaction times	Drinking alcohol, taking drugs, tired.
	Braking distances	Weather conditions, worn brakes or tyres, road surface, size of braking force.
	Work done by braking force, reduces kinetic energy	Kinetic energy decreases, temperature of brakes increases due to frictional forces.

AQA FORCES part 2

Observing and Speed affects both thinking and braking distances.

Frictional forces decelerate a
moving object and bring it to rest.

Thinking distance	Distance travelled whilst the driver reacts
Braking distance	Distance travelled whilst the car is stopped by the brakes
Stopping distance	Total thinking and braking distances

recording motion

| Inertial mass $=$ force \div acceleration |
| :---: | :---: |

If the mass is large, to change velocity a
decreases, forces.

HIGHER ONLY
big force is needed.

