## Short Division

## Prior Knowledge:

- Times tables.
- Division with remainders.

Division is one of the four basic operations of arithmetic. To divide is to share, or group, a number into equal parts. For very simple divisions, we can use sharing or grouping. For example:

$$
\begin{array}{rll}
10 \div 2: & ||||||||\mid & \text { (10 parts) } \\
& \text { (11) (11) (11) (11) } & \text { (shared into groups of 2) }
\end{array}
$$

There are 5 groups, so we can say that $10 \div 2=5$. However, when we are dividing larger numbers, it can be worth using the written division method known as the bus-stop method. It's called the bus-stop method because the numbers are placed within a structure made of a horizontal line and a vertical line, like the back and the roof of a bus shelter:

## Example 1

Calculate $135 \div 5$.

To divide 135 by 5, place the numbers into the frame like this:

$$
5 \longdiv { 1 3 \quad 3 }
$$

We work from left to right when performing written division, unlike when we use column subtraction, addition and multiplication.

To begin with, we must work out the answer to $1 \div 5$, or how many 5 s go into 1 . 0 remainder 1 is the answer.

Write the 0 above the 1 . The remainder, 1 , goes in front of the next digit, 3, making it 13.


Now we need to know how many 5s there are in 13 , or $13 \div 5$. The answer is 2 remainder 3 . We place the 2 above the 3 , attaching the remainder 3 to the next digit, 5, making it 35 .


Finally, $35 \div 5=7$.

$135 \div 5=27$

## Example 2

Calculate $150 \div 4$.

Begin by placing the numbers into the frame:

$$
4 \longdiv { 1 } 5 \quad 5 \quad 0
$$

Working from left to right, begin with $1 \div$ 4 , which is 0 remainder 1 . Remember, we write the 0 above the 1 and the remainder 1 attaches itself to the next digit, 5 , which makes it 15.


Next, calculate $15 \div 4$, which is 3 remainder 3.

$30 \div 4=7$ remainder 2 .


This time, we have reached the end of the digits but still have a remainder of 2. We could simply write 'r2' to indicate a remainder of 2 but, while expressing the remainder in this way can be useful in some questions, it is more accurate to write the answer as a fraction or as a decimal.

If we were to write the answer as a decimal, we would do this as follows:

1. Add a decimal point following your numbers, top and bottom:

2. Place a 0 after the decimal point in the frame:

3. Now attach the remainder (which in this case is 2 ) to the 0 :

4. Now complete the division, $20 \div 4$.

$150 \div 4=37.5$

To write our answer as a fraction, we would take our answer so far, 37, and follow it with a fraction with our remainder, 2 , as the numerator and the number we are dividing by, 4 , as the denominator. We could then cancel down our fraction:
$150 \div 4=\mathbf{3 7} \frac{\mathbf{2}}{\mathbf{4}}$
$150 \div 4=37 \frac{1}{2}$

## Example 3

We can use the bus-stop method when dividing a decimal by a whole number.

Let's consider the calculation $5.2 \div 2$.

Place the numbers in the frame, taking care to line up the decimal points.

$$
2 \longdiv { 5 . 2 }
$$

Now, we can carry out the division like in other examples:

$5.2 \div 2=\mathbf{2 . 6}$


As we still have a remainder, 2 , add another 0 into the frame:


$1 \div 8=\mathbf{0 . 1 2 5}$

## Example 5

Sometimes, there might be a recurring answer:
$122 \div 3$


The remainder will continue to be 2, therefore the answer is recurring. We could write the remainder as a decimal:

## 40.6.

Or, we could write the remainder as a fraction. As before, use the remainder as the numerator (in this case, 2), and the value you are dividing by as the denominator (in this case, 3 ): $\mathbf{4 0} \frac{\mathbf{2}}{3}$.

## Example 6

At a conference there are 725 people. Each table seats 8 people. How many whole tables are needed to seat everyone?

This question is asking how many times 8 fits into 725 , or $725 \div 8$.


Here we have a remainder of 5 . In this example, writing the answer as a decimal or fraction isn't particularly beneficial. The remainder of 5 tells us that if there were 90 tables, then 5 people would be unseated. As we are being asked to find out the number of whole tables needed, 91 tables are needed to seat all 725 people.

1. Calculate the following:
a. $675 \div 5$
b. $186 \div 6$
c. $244 \div 4$
d. $156 \div 12$
e. $126 \div 7$
f. $256 \div 8$
g. $1580 \div 4$
h. $432 \div 16$
2. Calculate the following:
a. $7.2 \div 2$
b. $14.8 \div 4$
c. $2.5 \div 5$
e. $4.2 \div 3$
f. $175.5 \div 15$
g. $96.8 \div 4$
3. Calculate the following, writing the remainders as decimals and fractions.
a. $276 \div 5$
b. $146 \div 8$
c. $570 \div 4$
d. $268 \div 8$
e. $474 \div 12$
f. $2658 \div 5$
g. $1505 \div 8$
h. $332 \div 3$
4. Calculate the following, writing the remainders as decimals.
a. $4.1 \div 5$
b. $18.2 \div 4$
c. $26.3 \div 4$
e. $254.68 \div 20$
f. $78.5 \div 4$
g. $3 \div 8$
5. a. A box holds 6 eggs. How many boxes are needed to hold 228 eggs?
b. A spoon holds 5 ml of medicine. How many spoons of medicine would you get from a 275 ml bottle of medicine?
$\qquad$
$\qquad$
c. Elliott buys a pack of 24 cans of lemonade for $£ 6$. Calculate the cost of one can of lemonade.
$\qquad$
$\qquad$

## Challenge

A sports shop has 23 boxes of tennis balls, each with 5 tennis balls. It also has 132 individual tennis balls. If the individual tennis balls were also put into boxes of 5 , how many full boxes of tennis balls would there be altogether?

