Chapter 2: Energy Knowledge organiser

Energy adds up

The law of conservation of energy states that energy cannot be created or destroyed, only transferred.

total energy before = total energy after

Transferring energy

Light, sound, and electricity are ways of transferring energy between different stores.

Energy and temperature

- Thermometers measure temperature in degrees Celsius (°C).
- Temperature measures the average energy.
- Thermal energy measures the total energy.

A warm bath has more thermal energy than a heated kettle, even though the kettle has a higher temperature.

Heating solids, liquids, and gases

- As we heat things the particles gain more **kinetic energy**, and vibrate more or faster.
- The energy needed to heat an object depends on the mass, material and temperature rise.

Equilibrium

Equilibrium is when objects have the same thermal energy.

Energy and power

Renewable resources

Renewable resources produce greenhouse gases when built, not when used, and will not run out.

For example, wind, tidal, wave, hydroelectric, geothermal, biomass, and solar powers.

The current created is sent to our offices, factories, and homes down long cables.

Fossil fuels are burned to heat water, which produces steam.

These gase

· Particles collide into others when they vibrate.

Particles

Thermal energy can be **transferred** by **conduction**, **convection** or **radiation**.

Convection

Conduction

Occurs in solids.

- Occurs in liquids or gases.
- The part in contact with the heat source gets hotter. The particles move faster, causing them to become further apart, and a decrease in density.
- The hot part then rises, and cooler, denser parts fall and take its place at the bottom.
- They now heat, so the cycle continues. We call this a **convection current**.

Non-renewable resources

Non-renewable resources include the fossil fuels coal, oil, and gas. These were formed millions of years ago from fossilised remains.

These are non-renewable because you cannot reuse them, and they will Food and fuels

- There is energy in the **chemical stores** associated with food and fuel.
- Energy is measured in joules (J).
 - You need different amounts of energy for

e fossil fuels produce greenhouse es, such as carbon dioxide.	The steam turns a turbine, which spins a generator.	eventually run out. Coal, oil, or gas are used to run thermal power stations.	different activitie	es.	
Key terms Make sure you can write	definitions for these key terms.				
absorb chemical store	conduction convection convect	tion current equilibrium fossil fu	el gear greenhous	se gas infrared radiation	insula
law	of conservation of energy lever	non-renewable power station ra	diation renewable	reflect thermal energy	therm

each second.

Energy bills

- For example, a 2kW device uses 4kWh.
- staff, and infrastructure.

Reducing bills

- Use fewer appliances or more efficient ones.

- All objects emit radiation.
- rough/smooth).
- Radiation can be absorbed or reflected.

Energy and power

Power is the rate of energy transfer – how much energy is transferred

• Energy bills are measured in 1 kilowatt per hour (kWh).

• A bill covers the cost of the fuel used at the power station, the power station,

• To convert kWh this to joules, convert the time to seconds.

For example, 2000J/s × 7200s = 14400000J

Insulated houses lose less thermal energy so don't need to use as much power.

Work energy and machines

Work done (J) = force (N) \times distance (m)

Simple machines like levers and gears can make it easier to do work but you still get the energy out that you put in.

Radiation

• Infrared radiation transfers energy without particles – it is a wave.

• The amount depends on their temperature and the surface (colour and

