

The components of a cell each have different functions.

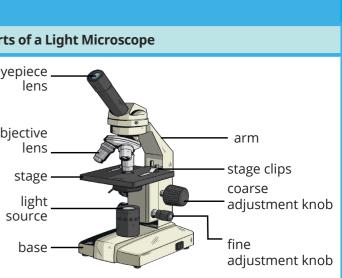
Sub-Cellular Structure	Function			
nucleus	Controls the activities of the cell. It contains genetic material (DNA), which is packaged into structures called chromosomes.			
circular DNA	The DNA of bacteria found free in the cytoplasm.			
mitochondria	Contain the enzymes needed for aerobic respiration, which releases energy for the cell.			
chloroplasts	Contain a pigment called chlorophyll, which absorbs light to provide energy for photosynthesis.			
cell wall	Helps to strengthen the cell and provides support for the plant.			
cell membrane	Controls the movement of substances into and out of the cell.			
cytoplasm	A jelly-like substance that fills the cell, where most chemical reactions occur.			
flagellum	A tail-like structure that allows bacteria to move around.			
permanent vacuole	Filled with cell sap to keep the cell rigid to support the plant.			
plasmids	Plasmids are small rings of DNA that code for specific features, such as antibiotic resistance.			

sub-cellular structures.						
Sub-Cellular Structure	Animal Cell	Plant Cell	Bacterial Cell			
nucleus	~	✓	×	L		
circular DNA	×	×	✓	L		
mitochondria	√	~	×			
chloroplasts	×	~	×	L		
cell wall	×	~	~	U		
cell membrane	~	~	✓			
cytoplasm	~	~	✓	·		
flagellum	×	×	✓			
permanent vacuole	x	√	×			
plasmids	×	×	~			

Levels of Organisation

A **cell** is the smallest unit of a living organism. It contains structures needed to carry out life processes.

A **tissue** is a group of cells of the same type.



An **organ** is a group of different tissues working together to carry out a job.

An **organ system** is a group of different organs working together to perform a particular function.

BEYOND SCIENCE

ing a Light Microscope

- Plug in the microscope and turn on the light.
- Place the slide on the stage and hold it in place with the stage clips.
- Turn to the objective lens with the lowest magnification.
- Look down the eyepiece lens and use the adjustment knobs to focus the specimen.
- Increase the magnification by turning to a higher power objective lens, then use the fine adjustment knob to bring the cells back into focus.

Organ System Functions

Organ System	Function	
musculoskeletal system	Muscles and bones working together support and move the body.	
reproductive system	Produces sperm (males) and eggs (females). In females, this is where the foetus develops.	
respiratory system	Takes in oxygen from the air and removes carbon dioxide from blood.	
immune system	Protects the body against infections.	
digestive system	Breaks down and absorbs food molecules.	
circulatory system	Transports substances around the body.	

cialised Cells				The Skeleton	Joints
h function carrie cures.	ed out by the organis	m is performed by differen	The skeleton has several functions:		
Name	Diagram	Functions	Adaptions	Support – The skeleton provides a frame to hold your body upright and keep your organs in place.	A hinge
root hair cell		To absorb water and minerals from the soil.	Long protrusion fits between grains of soil and provides a large surface area for the absorption of water and minerals into the cell.	Protection - Bones are hard and strong to protect important organs such as the heart and the brain.	forward are hing
oalisade cell		To carry out photosynthesis and make food for the plant.	Lots of chloroplasts to absorb light energy for photosynthesis. Its tall, long shape gives the cell a large surface area to maximise the absorption of light.	 Movement - Your bones and muscles work together allow your body to move. Making blood cells - Some bones contain a soft tissue celled base merupary. Ded blood cells and white blood 	movem and hip
sperm cell		To travel to and fuse with an egg cell for fertilisation.	Long tail for movement to the egg and lots of mitochondria to release energy to allow the sperm to move.	called bone marrow. Red blood cells and white blood cells are made in the bone marrow. The adult body contains around 206 bones. Some are	
nuscle cell		To help the body to move.	Contains bands of protein that change shape to contract and relax the muscle. Lots of mitochondria to provide energy for muscle contraction.	shown below: mandible	
nerve cell	HAR K	To carry nerve impulses around the body.	Long fibres carry electrical impulses up and down the body and branching dendrites at each end connect to other nerves or muscles.	(lower jaw) scapula	Ligam bones
ciliated epithelial cell		To move mucus away from the lungs.	Tiny hairs called cilia to help waft mucus along the airways. Lots of mitochondria release energy for the cilia to move.	(shoulder blade) humerus vertebrae (spine)	wiuscie
red blood cell	0	To transport oxygen around the body.	Biconcave shape increases the surface area for the diffusion of oxygen. No nucleus so that there is more room for haemoglobin, which binds oxygen molecules.	pelvis radius carpals (wrist bones) femur	antago
white blood cell		To fight pathogens which cause disease.	Some can change shape to squeeze out of blood vessels and engulf pathogens. Some can produce antibodies or antitoxins.	(thigh bon patella (kneecap)	e)
egg cell		To be fertilised by the sperm cell.	The cytoplasm contains nutrients for the developing embryo. The membrane changes after fertilisation to stop any more sperm getting in.	talustibia (ankle bone)	This cor

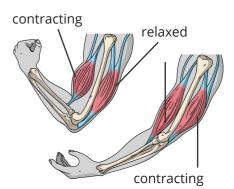
BEYOND SCIENCE

d Organisation Knowledge Organiser


are found where bones meet. Sometimes these re fixed but most joints are flexible to allow the move.

joint allows backwards and ds movements. Knees and elbows ge joints.

and socket joint allows nent in all directions. Shoulders os are ball and socket joints.


Cartilage is a strong, smooth tissue that covers the ends of the bones to protect them from damage.

ents hold the together.

Fluid in the joints keeps the cartilage slippery to reduce friction.

s can't push, they can only pull.

of muscles that work together are called onistic muscles.

mbination of muscles, bones and joints making dies move is called **biomechanics**.