Expanding Double Brackets

Prior Knowledge:

- Expanding single brackets.
- Collecting like terms and simplifying expressions.
- Adding and multiplying negative numbers.

Expanding double brackets is a bit trickier than expanding single brackets - this time, you must multiply everything in the first bracket by everything in the second bracket.

There are a number of different methods to expand double brackets - we'll look at two. The first is the FOIL method:

First - multiply the first term in each bracket together.
Outer - multiply the outside terms (the first term in the first bracket by the second term in
Inner - multiply the inside terms (the second term in the first bracket by the first term in
Last - multiply the second term in each bracket together.

The second is the grid method.
When expanding double brackets, you are left with four terms. Usually you're also asked to fully simplify an answer. Two terms will usually combine to leave you with three terms in a simplified answer.

Example 1

Expand and simplify $(x+2)(x+5)$.

FOIL Method

$\mathrm{F}: x \times x=x^{2}$
$0: x \times 5=5 x$
1: $2 \times x=2 x$
$\mathrm{L}: 2 \times 5=10$

Write out the terms as an expression:
$x^{2}+5 x+2 x+10$
$5 x$ and $2 x$ add to make $7 x$ so the final answer is:
$x^{2}+7 x+10$

Grid Method

You can also use a multiplication grid to expand the brackets.

\times	x	+2
x	x^{2}	$+2 x$
+5	$+5 x$	+10

Write out the terms as an expression and simplify:

$$
\begin{aligned}
& x^{2}+5 x+2 x+10 \\
& x^{2}+7 x+10
\end{aligned}
$$

Example 2

Expand and simplify $(x-7)(x-3)$.

FOIL Method

$\mathrm{F}: x \times x=x^{2}$
$\mathrm{O}: x \times-3=-3 x$
$\mathrm{I}:-7 \times x=-7 x$
$\mathrm{~L}:-7 \times-3=21$

Write out the terms as an expression:
$x^{2}-3 x-7 x+21$
$-3 x$ and $-7 x$ combine to make $-10 x$, so the final answer is:
$x^{2}-10 x+21$

Grid Method

You can also use a multiplication grid to expand the brackets.

\times	x	-7
x	x^{2}	$-7 x$
-3	$-3 x$	+21

$$
\begin{aligned}
& x^{2}-3 x-7 x+21 \\
& \boldsymbol{x}^{2}-\mathbf{1 0 x}+\mathbf{2 1}
\end{aligned}
$$

Example 3

Expand and simplify $(x+6)^{2}$.

Remember, squaring is multiplying something by itself. This means $(x+6)^{2}$ is the same as $(x+6)(x+6)$. When you see squared brackets, write them out as two brackets then expand as usual.

FOIL Method

$\mathrm{F}: x \times x=x^{2}$
$0: x \times 6=6 x$
I: $6 \times x=6 x$
L : $6 \times 6=36$

$x^{2}+6 x+6 x+36$
$x^{2}+12 x+36$

Grid Method

You can also use a multiplication grid to expand the brackets.

\times	x	+6
x	x^{2}	$+6 x$
+6	$+6 x$	+36

$$
\begin{aligned}
& x^{2}+6 x+6 x+36 \\
& \boldsymbol{x}^{2}+\mathbf{1 2 x}+\mathbf{3 6}
\end{aligned}
$$

Your Turn

Expand and simplify each of the following:

1. $(x+6)(x+3)$
\qquad
\qquad
\qquad
2. $(x+8)(x+4)$
\qquad
\qquad
\qquad
3. $(x+2)(x+10)$
\qquad
\qquad
\qquad
4. $(x-5)(x+3)$
\qquad
\qquad
\qquad
5. $(x-4)(x+6)$
\qquad
\qquad
\qquad
6. $(x+12)(x-3)$
\qquad
\qquad
\qquad
7. $(x+7)(x-6)$
\qquad
8. $(x+9)(x-8)$
9. $(x-8)(x+12)$
\qquad
\qquad
\qquad
10. $(x+8)^{2}$
\qquad
\qquad
\qquad
11. $(x+10)^{2}$
\qquad
\qquad
\qquad
12. $(x+4)^{2}$
\qquad
\qquad
\qquad
13. $(x-2)^{2}$
\qquad

Challenge

A rectangle is shown below.
Form a simplified expression for the area of the rectangle.

21. $(2 x+2)(x+5)$
\qquad
\qquad
\qquad
20. $(x-3)^{2}$
\qquad
\qquad
\qquad (
22. $(3 x+3)(x+2)$
23. $(2 x-4)(x-3)$
24. $(2 x+3)^{2}$
25. $(3 x-2)^{2}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

